
QBEES: Query by Entity Examples

Steffen Metzger
Max Planck Institute for

Informatics
Saarbrücken, Germany

smetzger@mpi-
inf.mpg.de

Ralf Schenkel
Universität Passau
Passau, Germany

schenkel@ifis.uni-
passau.de

Marcin Sydow
Polish-Japanese Institute of

Information Technology
and Institute of Computer

Science, Polish Academy of
Sciences

Warsaw, Poland
msyd@poljap.edu.pl

ABSTRACT
Structured knowledge bases are an increasingly important
way for storing and retrieving information. Within such
knowledge bases, an important search task is finding sim-
ilar entities based on one or more example entities. We
present QBEES, a novel framework for defining entity sim-
ilarity based only on structural features, so-called aspects,
of the entities, that includes query-dependent and query-
independent entity ranking components. We present evalu-
ation results with a number of existing entity list comple-
tion benchmarks, comparing to several state-of-the-art base-
lines.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

Keywords
list completion; entity search

1. INTRODUCTION
More and more data is available in semantic form, e.g.,

within the Linking Open Data cloud [8], product databases
or common knowledge ontologies like DBpedia [2] or YAGO
[9]. In consequence, information retrieval methods become
more important to navigate the semantic data [12]. One
typical IR task is the search for similar information pieces
given an example. While explicit search interfaces allow a
fine-tuned control, many use-cases rather suggest implicit
query interfaces. Whenever a retrieval task is too compli-
cated to be explicitly expressed by average users, is vague
in nature or unclear to the user herself, an implicit search
interface is a natural user-friendly choice. Consider, for in-
stance, the task to replace a particular worker of a company’s
workforce or searching for all possible replacements of a par-
ticular part in a production process. Instead of specifying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2507873.

all the relevant abilities of the worker or all the properties
of the part, the natural choice would be to just provide the
pointer, e.g. a URI, to its (already existing) semantic de-
scription. Other applications include general purpose entity
search engines that provide similar entities given one or sev-
eral examples. With such an engine, a user might look for
movie directors that were also active actors, thus provid-
ing Quentin Tarantino and Clint Eastwood the user might
expect to find Sylvester Stallone and Peter Jackson.

A central problem in this setting is the inherent ambigu-
ity of examples. For instance, assume that a user provides
“Arnold Schwarzenegger” as an example. The user’s interest
could be in other Austrian (ex-)body-builders, governors of
California or actors that appeared in “The Expendables”. In
principle, a search by example in a semantic data-set can be
considered a faceted search [12] with no direct control over
the facets. A holistic approach to entity similarity, like using
a random walk or vector model to compute pairwise similar-
ity values is by definition agnostic to the different possible
facets of an example. In this paper we propose a model
that captures all possible facets in so called aspects of the
query. Thus our model can make the facet responsible for
the inclusion of any returned entity transparent to the user.

The main contributions of this paper are 1) the introduc-
tion of an aspect-based entity model, 2) the presentation of
various aspect-oriented ranking variations, and 3) a prelim-
inary evaluation of the approach.

2. RELATED WORK
Entity search has been considered extensively in the lit-

erature, often with a focus on unstructured or semistruc-
tured data. The entity tracks at TREC [3] and INEX [6]
introduced mainly two different retrieval tasks: finding re-
lated entities (with a textual description of the relationship
and a target category), and entity list completion (with a
list of example entities and a textual description). While
the majority of test collections has been built based on un-
structured text and semistructured XML documents, recent
developments such as the Semantic Search Challenge1 have
extended this to semantic (RDF) data that forms a data
graph with entities as nodes, the same scenario considered
in this paper.

Core ingredients of many entity search systems are sim-
ilarity measures for entities. A large body of work exists
that exploits the graph structure for determining how sim-

1http://semsearch.yahoo.com/

ilar two entities are. One of the earliest approaches was
SimRank [10] which considers two entities as similar if their
context is similar. A more recent line of work uses random
walks with restart to compute similarities of one entity or a
group of entities to all other entities, such as Personalized
Pagerank [7], with a focus on relational data graphs [1, 11].

Another group of approaches uses features extracted from
the context of entities to determine their similarity, includ-
ing textual features (terms in the entity’s uri or appearing in
documents close to the entity) and structural features (cate-
gories or types of the entity). Balog et al. [4] propose to use
language models that include terms and categories. Bron et
al. [5], which is closest to our work, combines a term-based
language model with a simple structural model including
uniformly weighted facts about the entity. In contrast, our
query model does not include a keyword component, our set
of structural features in the aspects is more general, and our
model allows to give different weights to different features.
We experimentally compare our model to their structural
model in Section 6.

Yu et al. [14] solve a slightly different problem where en-
tities similar to a single query entity are computed, exploit-
ing a small number of example results. Focusing on het-
erogeneous similarity aspects, they propose to use features
based on so-called meta paths between entities and several
path-based similarity measures, and apply learning-to-rank
methods for which they require labelled test data. Wang
and Cohen [13] present a set completion system retrieving
candidate documents via keyword queries based on the en-
tity examples. Using an extraction system additional enti-
ties are then extracted from semi-structured elements, like
HTML-formatted lists.

3. KNOWLEDGE GRAPH
A Knowledge Graph (KG) consists of two basic compo-

nents: A Fact graph FG and an ontology O.
The Fact graph FG is a directed multigraph where each

node represents some entity (e.g. Warsaw, Poland). Each pair
of nodes connected by a labelled arc represents an instance
of a binary relation between two entities where the arc la-
bel represents the kind of relation (e.g. isCapitalOf), thus
representing a fact about the entities (e.g. “Warsaw is the
capital of Poland”). In the following we will use the nota-
tion relation(arg1,arg2) for any arc with label relation in
KG that connects nodes arg1 and arg2. In this notation
the fact “Warsaw is the capital of Poland” is represented as
isCapitalOf(Warsaw,Poland).

Each node in the ontology tree O represents a class (type)
of entities (e.g. person or city). The root of this tree repre-
sents the most general class of entities (e.g., owl:Thing or
wordnet_entity) The nodes in the ontology tree are con-
nected by directed arcs labelled as subClassOf.

The fact graph FG connects the entities to the ontology O:
an arc of the form hasType(anEntity,aClass) represents the
information that the entity anEntity is an instance of class
aClass. Due to inheritance, each such entity is implicitly
also an instance of all classes that are more general than the
explicitly mentioned class. As an example, the explicit arc
hasType(Chopin,composer) implies also an implicit arc hasType

(Chopin,person). Notice that an entity may be an instance of
several different classes so that none of them is more general
than another (e.g. hasType(Chopin,composer), hasType(Chopin,
pianist)).

4. ASPECT MODEL OF ENTITIES
Given an entity q (e.g. Chopin), consider all arcs that are

incident with q in KG. These arcs can either represent facts
concerning q (e.g. bornIn(Chopin,Poland)) or a type of the en-
tity q (e.g. hasType(Chopin,composer)). For any entity q (i.e.
a node in FG), each such arc represents some “atomic prop-
erty” of this entity (e.g. birthplace, type, occupation); the
entity is characterised by the set of all “atomic properties”.

By replacing the particular entity q in such an arc with a
variable x we obtain a logical predicate with one free variable,
e.g. a factual arc bornIn(Chopin,Poland) naturally induces a
predicate of the form bornIn(x,Poland) that represents the
“basic property” of this entity of “being born in Poland”.

We call such a predicate a basic aspect of the entity. As
a further relaxation, we also include basic aspects where
only the label remains (e.g., bornIn(x,y)). Now, we define
the entity set of an aspect. Each basic aspect a of entity
q defines the set of all entities that share this aspect with
entity q. For example, for the basic aspect bornIn(x,Poland)
its entity set consists of all entities that are born in Poland.
We call this the entity set of aspect a and denote it as E(a).

Let the set of all basic aspects of an entity q be denoted as
A(q). A compound aspect of entity q is any subset A of A(q).
E.g. for two basic aspects a1 = bornIn(x, Poland), a2 =
hasType(x, composer) ∈ A(q) the set A = {a1, a2} represents
a compound aspect of “being a composer born in Poland”.
We naturally extend the definition of entity set to compound
aspects E(A) as the set of all entities that share all basic
aspects in A (in the former example: all the entities in KG
that are both composers and are born in Poland).

4.1 Similarity by Maximal Aspects
By definition, for any compound aspect A of entity q, any

entity e ∈ E(A) has all the basic aspects represented by the
compound aspect A. Furthermore, the more aspects from
A(q) it shares with q the more similar it is to q. The entities
that share all the aspects with given entity q would be ex-
tremely similar to q, but often only q itself has this property
since many basic aspects are very specific, and A(q) often
characterises the entity uniquely. Thus, to look for most
similar entities to q, we have to relax E(A(q)) by dropping
as few basic aspects from it as possible.

We call a compound aspect A of entity q a maximal aspect
of q iff it satisfies the two conditions:

1. E(A) contains at least one entity besides q

2. A is maximal wrt inclusion (i.e. extending this set of
basic aspects with any more basic aspect of q would
violate the first condition).

Notice that if A is a maximal aspect of q, all enitities
e ∈ E(A) \ {q} are “maximally” similar with respect to a
specific set of basic aspects to q. We denote the family of
all maximal aspects of entity q as MA(q).

5. ASPECT BASED ENTITY RETRIEVAL
We now discuss how our aspect model is used to retrieve

entities given example entities. Formally the task is defined
as follows: Given a set of query entities Q as initial hints, we
want to retrieve a set of entities that are similar, i.e. share
some properties with the entities in Q.

Basically our general approach to select k entities consists
of the following steps. 1. identify the family of maximal

aspects MA(Q) of Q. 2. filter the maximal aspects by types
typical for the entities in Q, 3. rank the maximal aspects, 4.
pick the entity with largest popularity pop(e) from the top
aspect and update the aspect’s rank, 5. redo step 4 until k
entities are picked.

1. Maximal Aspects. Given a set of entities Q, first
for each entity q ∈ Q the set of its basic aspects A(q) is
computed. Then the shared properties are identified by in-
tersecting the aspect sets A(Q) = ∩q∈QA(q). This provides
the corresponding family of maximal aspects MA(Q). (For
a set of entities Q, we extend the definition of a maximal
aspect set such that the entity set of a maximal aspect must
contain at least one entity not in Q.)

2. Typical Types. One of our basic assumptions is that
the goal is to find other entities of relatively equal type.
For instance, given a city, the output should be other cities
and not, e.g., a country, because they share the same river
passing through.

Thus, for each query Q we determine a set of typical types
T (Q) and consider only maximal aspects that contain at
least one such typical type (or descendant thereof) as basic
aspect. Some details aside, T (Q) consists of all types shared
by all entities in Q excluding some very general classes. If
this yields an empty set, we also allow types that are shared
by a majority of q ∈ Q.

3. Aspect Ranking. The resulting maximal aspects
are of different specificity and thus quality. For instance,
a maximal aspect for Arnold Schwarzenegger might consist
of hasType(x,person) and hasBirthplace(x,Austria) while an-
other one might consist of hasType(x,GovernorOfCalifornia).
Hence, in order to decide which aspect set is more likely to
be of interest, we rank the maximal aspects (see Section 5.1).

4. Picking an entity. Similarly to aspects, the enti-
ties in the entity set of an aspect may have different likeli-
hoods of importance to a user, especially for relatively broad
aspects. We use two different entity importance measures
that provide an estimated popularity pop(e) for an entity e.
First, we use the stationary probabilities of a random walk
on KG. Alternatively, as a YAGO-specific method we esti-
mate popularity based on the click count of the Wikipedia
page corresponding to the entity.

5.1 Aspect Ranking
Given a set of query entities Q, we rank aspects in a

language-model-style approach, i.e. each aspect A is ranked
according to P (A|Q), which we model as:

P (A|Q) ∝ P (Q|A)× P (A) (1)

where P (Q|A) is the likelihood to generate the original
query entities given the aspect A and P (A) is the likelihood
to pick A (from all maximal aspects). In order to estimate
P (Q|A) and P (A) we employ different approximations that
are combined in 4 rankers. These ranking approaches are
based on the following components. Given an estimator for
the popularity of an entity, pop(e), the popularity of an as-
pect can be estimated as the aggregated popularity of its en-
tities, i.e. pop(A) =

∑
e∈E(A) pop(e) normalized by the sum

over the popularity of all entities. A basic aspect b might be
considered for its worth or likelihood to be generated v(b).
We estimate the value of a basic aspect by its selectivity, i.e.
v(b) = 1

|E(b)| or its inverse v−1(b) = 1 − 1
|E(b)| . The value

ratio ratio(A,B) between two (compound) aspects A,B can

then be computed as

ratio(A,B) =

∑
a∈A v(a)∑
b∈B v(b)

(2)

Similarly the ‘cost ’of a compound aspect A can be computed
by cost(A) =

∑
a∈A v−1(a) and normalized by the overall

cost as follows

ncost(A) =
cost(A)∑

B∈MA(Q) cost(B)
(3)

We now consider the following ranking functions:

spop P (A|Q) ∝ P (Q|A)× P (A) = 1
|E(A)| × pop(A)

cost P (A|Q) ∝ P (Q|A)× P (A) = 1
|E(A)| × ncost(A)

dist P (A|Q) ∝ P (Q|A)×P (A) = ratio(A,A(Q))× pop(A)

distp P (A|Q) = ratio(A,A(Q))

Note that we can easily introduce a diversity aspect into the
ranking by remembering from which aspects entities have
already been picked.

6. EVALUATION
Setup. We evaluate our model using the Wikipedia-based

knowledge base YAGO [9]. For our preliminary evaluation,
we adopt two datasets from [5] based on the INEX 2007
and INEX 2008 Entity Tracks, mapping entities to YAGO
where possible and removing the others. For each topic in
the datasets, we consider 1-5 example entities and randomly
generate 10 distinct queries for each size as long as there
remains at least one other relevant entity. For queries of
size 1 to 3 in the inex2008 dataset we created up to 5 queries
due to the long runtimes of the random walk algorithm used
as a baseline. This results in 862 queries on 23 topics for
the inex2007 dataset and 1244 queries on 48 topics in the
inex2008 dataset.

We compute mean average-precision(map) and mean nor-
malized discounted cumulative gain (mndcg) for rankings of
length 100. While the assessments are graded values from 0
to 2, we considered any assessment other than 0 relevant.

Entity Importance Estimation. We first evaluate the
effect of the two different entity importance estimators, ran-
dom walk and Wikipedia click counts. As clearly visible
in Figure 2, the Wikipedia click based importance estima-
tion (+wi versions) is always more effective in supporting the
rankers than the knowledge graph based random walk esti-
mator (+rw versions). Hence, we use the Wikipedia page
clicks for entity importance estimations in the following.

Figure 2: Importance Estimators - INEX2007

Type constraints. As the original topics of the INEX
datasets come with Wikicategory based target categories

Figure 1: Approach Comparison - INEX2008

Figure 3: Topic Category Constraints - INEX2007

for the entities, we automatically mapped these to YAGO
wikicategory-classes and used them as a constraint for sug-
gested entities. Figure 3 shows that this does not work well,
since the resulting classes are too over-fitting, i.e. unfortu-
nately the YAGO data is quite incomplete in this perspec-
tive, such that the class constraints often filter out too many
entities. Note that in cases where the automatic category
mapping failed, we fell back to the default method (which is
what we compare against).

Competitors. We now evaluate our approach with its
different ranking approaches (spop, cost, dist, distp) against
(1) a random walk with restart at the query nodes, (rwalk:c,
rwalk:tf, rwalk:n) as a graph-based baseline, and (2) the
structure-only approach suggested by Bron et al. in [5]
(bronetal). Note that in (1) we optionally applied a filter
on resulting entities, either using the categories provided in
the INEX dataset for the topic where possible (‘:c’ versions)
or using our own typical type identification approach(‘:tf’).

Results. Figure 1 shows the map and mndcg values for all
approaches on the inex2008 dataset. Note that the random
walk computation was so slow that we left it out for the
higher query sizes. As the results show, the random walk
benefits strongly from entity filtering (‘:c’,‘:tf’ versions vs ‘:n’
version). Note that all our approaches behave similarly well.
While for queries of size 1, our approach provides roughly the
same quality as the approach suggested by Bron et al and
the best random walk, for larger queries our aspect based
approach outperforms both. The mndcg values indicate a
quality dampening at query size 5, this is probably due to
over-fitting and lower agreement for the typical types.

7. CONCLUSION
In this paper we presented a facet aware entity similar-

ity model and evaluated its use for set completion tasks.
While our preliminary evaluation shows that it can outper-
form state of the art structure-only models in several cases,
the narrow focus on very specific similar entities can also
be a drawback. In particular, future work will need to look

into relaxing maximal aspects when they are too narrow and
thus exclude other similar results that are not contained in
a maximal aspect from the result ranking.
Acknowledgements: The work is supported by Polish Na-
tional Science Centre grant DEC-2012/07/B/ST6/01239

8. REFERENCES
[1] Alekh Agarwal et al. Learning to rank networked

entities. In KDD, pages 14–23, 2006.

[2] Sören Auer et al. DBpedia: A nucleus for a web of
open data. In Karl Aberer et al., editors, The
Semantic Web, volume 4825 of LNCS, pages 722–735.
Springer Berlin Heidelberg, 2007.

[3] Krisztian Balog et al. Overview of the TREC 2011
entity track. In TREC, 2011.

[4] Krisztian Balog et al. Query modeling for entity
search based on terms, categories, and examples. ACM
Trans. Inf. Syst., 29(4):22, 2011.

[5] Marc Bron et al. Example based entity search in the
web of data. In ECIR, pages 392–403, 2013.

[6] Gianluca Demartini et al. Overview of the INEX 2009
entity ranking track. In INEX, pages 254–264, 2009.

[7] Taher H. Haveliwala. Topic-sensitive pagerank: A
context-sensitive ranking algorithm for web search.
IEEE Trans. Knowl. Data Eng., 15(4):784–796, 2003.

[8] Tom Heath and Christian Bizer. Linked data:
Evolving the web into a global data space. Synthesis
Lectures on the Semantic Web: Theory and
Technology, 1(1):1–136, 2011.

[9] Johannes Hoffart et al. Yago2: A spatially and
temporally enhanced knowledge base from wikipedia.
Artificial Intelligence, 194(0):28–61, 2013.

[10] Glen Jeh and Jennifer Widom. SimRank: a measure of
structural-context similarity. In KDD, pages 538–543,
2002.

[11] Einat Minkov and William W. Cohen. Improving
graph-walk-based similarity with reranking: Case
studies for personal information management. ACM
Trans. Inf. Syst., 29(1):4, 2010.

[12] Daniel Tunkelang. Faceted search. Synthesis Lectures
on Information Concepts, Retrieval, and Services,
1(1):1–80, 2009.

[13] Richard C. Wang and William W. Cohen.
Language-independent set expansion of named entities
using the web. In ICDM, pages 342–350, 2007.

[14] Xiao Yu et al. User guided entity similarity search
using meta-path selection in heterogeneous
information networks. In CIKM, pages 2025–2029,
2012.

