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ABSTRACT

Traditional information retrieval techniques based on keyword
search help to identify a ranked set of relevant documents, which
often contains many documents in the top ranks that do not meet
the user’s intention. By considering the semantics of the keywords
and their relationships, both precision and recall can be improved.
Using an ontology and mapping keywords to entities/concepts and
identifying the relationship between them that the user is interested
in, allows for retrieving documents that actually meet the user’s
intention. In this paper, we present a framework that enables
semantic-aware document retrieval. User queries are mapped to
semantic statements based on entities and their relationships. The
framework searches for documents expressing these statements
in different variations, e.g., synonymous names for entities or
different textual expressions for relations between them. The size
of potential result sets makes ranking documents according to their
relevance to the user an essential component of such a system.
The ranking model proposed in this paper is based on statistical
language-models and considers aspects such as the authority of a
document and the confidence in the textual pattern representing the
queried information.
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1. INTRODUCTION
Information retrieval (IR) is traditionally based on keyword

queries and aims at identifying documents containing a set of
keywords, which provides a simple human understandable user
interface. Semantically aware techniques, as for instance used in
information extraction, can be used to enhance this basic paradigm
[5, 6, 26, 27]. Query expansion, for instance, may consider the
semantics of the given keywords [27]. Thus, the system is looking
not only for exact matches of the given keywords but also for
semantically similar keywords. Other approaches use information
extraction techniques as a filter to rerank retrieved results [5] or to
generate keyword queries using an IE framework [26].

Still, these systems have their shortcomings. Assume, for in-
stance, a user is looking for documents that verify if Barack Obama
was born in Kenya using “Obama” and “Kenya” as keywords.
Although keyword search might consider techniques such as query
expansion and alternative keywords for entities, documents are still
considered as bag-of-words so that the system might also output
documents mentioning that Obama visited Kenya on a diplomatic
mission. Although the search result might be improved by adding
keywords such as “birthplace” or “born”, query results still poten-
tially contain many false positives and documents using alternative
formulations are not found. The search can be improved by making
use of the full potential that information extraction offers, i.e., by
also considering the relationships between entities and the patterns
expressing these relationships.

In this paper, we propose a retrieval framework that applies
information extraction to transform a user query into RDF state-
ments and retrieves the most relevant witness documents sup-
porting them. For instance, given the phrase query “Barack

Obama was born in Kenya”, information extraction tools can
identify the contained statement in canonic form as the RDF
triple (Barack_Obama,bornIn,Kenya). Having applied the same
extraction tool on the document corpus beforehand allows us to
retrieve documents that mention the given statement. Thus, we
can find documents expressing the statement in various ways us-
ing different representations of the entities and different textual
expressions for the relationships between them. For example,
the statement (Barack_Obama,bornIn,Kenya) can be textually
expressed in many different forms: “Barack Obama was born in

Kenya”, “Obama’s birthplace is Kenya”, “Kenya, the birthplace

of the first African-American president,. . . ”, etc. In analogy to the
term keyword search, we refer to this concept as statement search.
The user input can either be a phrase (or a set of phrases) that is
mapped to RDF statements or an arbitrary set of RDF statements
that is selected by the user or corresponds to the result of a SPARQL
query evaluated over an RDF knowledge base.
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To make this work, our framework requires some information:
entity and relation dictionaries. For each entity, an entity dictio-
nary contains a set of possible textual expressions denoting the
entity. For instance, for the entity Barack_Obama the following
expressions are associated: “Barack Obama”, “Obama”, “the

first African-American president”. Each of these expressions can
be weighted to reflect how likely it represents the entity. This
information can easily be obtained from large knowledge bases
such as YAGO [33]. A relation dictionary provides a set of textual
expressions or patterns for each relation. For instance, the relation
bornIn can be expressed using the following patterns: “X was

born in Y”, “Y, the birthplace of X”. Each such pattern can be
associated with a confidence weight reflecting how well it expresses
the corresponding relation. Such patterns for relations can be
extracted using an information extraction tool such as [21]. After
having applied such information extraction techniques to a corpus
of documents, we can derive indexes that relate factual statements,
entities, and their relations to documents. And we can use this
information to retrieve a set of documents that satisfy the user’s
information need.

Given a user query, there are two important steps: (i) transform
the user query into a set of statements and (ii) ranking matching
documents according to their relevance. In this paper, we focus
on the second problem and assume that the first one can be
solved using information extraction tools [21, 33]. Consider, for
example, again our example statement (Barack_Obama,bornIn,
Kenya). Documents containing this statement multiple times
should be ranked higher than documents that only casually mention
it. This is similar in spirit to the term frequency in traditional
IR models. In addition, an appropriate ranking model also needs
to consider how well the statement is expressed in the document.
For example, a document containing the sentence “Barack Obama

was born in Kenya” should be preferred over a document stating
“Obama spent his childhood in Kenya”. This can be achieved
by exploiting confidences associated with the patterns. Another
important aspect that an appropriate ranking model needs to con-
sider is the on-topicness of a document. Biographical pages about
Barack Obama, for instance, are more likely to be relevant than
a news article that simply mentions the claim that he was born
in Kenya as a side note. Furthermore, authoritative pages such
as http://www.whitehouse.gov/ should be preferred over
documents such as blog entries. This is similar to authority-ranking
in traditional IR.

In summary, this paper introduces the notion of statement search

and proposes a framework that enables semantic-aware document
retrieval by mapping user queries to semantic statements and re-
trieving witness documents expressing these statements in different
textual forms. We propose an appropriate ranking model based on
statistical language-models that considers the following criteria: 1)
statement frequency, 2) pattern confidence, 3) entity occurrences,
and 4) page authority.

The rest of the paper is organized as follows: we first discuss
related work in Section 2 and provide background on information
extraction in Section 3. Section 4 gives an overview of statement
search. While Section 5 introduces the framework implementing
statement search, Section 6 presents the ranking model that the
framework relies on. Finally, Section 7 presents evaluation results
and Section 8 concludes the paper with an outlook to future work.

2. RELATED WORK
Utilizing information extraction (IE) techniques to support key-

word-based document retrieval has been studied in the litera-
ture [5, 15, 27]. While applying such techniques can improve

the performance of a keyword-based document search engine by
providing some understanding of the underlying information need
of a user, these approaches usually only use additional techniques
extending existing information retrieval (IR) algorithms.

Recently published approaches try to integrate ontological knowl-
edge databases with document retrieval techniques. Pound et al.
[26] propose a framework using descriptive structured queries with
keywords as basic operators. A query is assumed to describe a
set of entities by a set of constraints. After resolving the entities
that satisfy the query constraints using an ontological knowledge
base, the framework retrieves documents containing references to
those entities. However, the retrieved documents do not necessarily
contain the relations given as constraints in the query. Hence,
looking for a US President born in Hawaii, President Obama would
probably satisfy the statement and the retrieved documents would
include documents containing Obama and a reference to Hawaii,
but the documents are not necessarily talking about the claim that
he was born in Hawaii. In contrast, our system also ensures the
presence of the relation in retrieved documents. While the proposed
framework is similar to ours to some extent, the authors focused
on the query language and used an ad hoc tf-idf approach for
the ranking whereas our work focuses on the ranking of result
documents. Still, the proposed query language could be combined
with our ranking mechanism.

Bear et al [5] couple an NLP information extraction tool with
an information retrieval engine by using it as a re-ranking filter for
result lists obtained from the IR engine. They report only small
gains by their technique compared to the results of the IR engine
alone. A similar combination is proposed by Hearst [15] for the
particular domain of topic based sentiment analysis.

Similarly, Blanco, and Zaragoza [6] examine ranking of support
sentences for entities. Given a keyword query, they aim at finding
entities in context answering the query, i.e., support sentences
that explain why an entity is an answer to the query. The paper
compares a number of different ranking approaches for the support
sentences. In contrast to our approach, the sentences are ranked
based on entities, not on statements.

Fagin et al. [13] investigate how to interpret keyword queries,
given an auxiliary database providing semantic concepts for entities
and relations. Given a keyword query, their technique can produce
various interpretations that (partially) match the given keywords
to semantic concepts or relations. For instance, it is not clear
whether the keyword query “buzz price” refers to documents
containing those words explicitly, documents about the Disney
affiliated economist Harrison “Buzz” Price, or documents stating
the price of the “Buzz Lightyear” toy. These parses of a keyword
query – and documents containing expressions of such a parse – can
be ranked by their specificity. Using this terminology, our approach
is given a specific parse (or a set of parses) as input. Instead of
considering different interpretations of the query, the problem we
focus on is to rank the documents containing textual manifestations
of the given (set of) parse(s).

Sereno et al. [30] as well as Uren et al. [34] propose a set
of tools to annotate documents, especially research documents,
with ontological expressions (claims) that form a claim network
that can be browsed and searched. While claims can be seen as
statements, their annotating approach is semi-automatic while our
approach tries to automatically annotate documents with contained
statements. This kind of search analysis focuses on the claim
network, while we investigate document based rankings.

Our ranking model for witness documents is based on language
models. Due to their good empirical performance and sound
theoretical foundation, approaches based on language models have
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received much attention in the IR community. Many variations
of the basic language model approach have been proposed and
studied. Language models have been applied to various retrieval
tasks such as cross-lingual retrieval [35], expert finding [2], XML
retrieval [17]. In particular, recently Elbassuoni et al. [11] proposed
a language-model-based ranking for structured queries over RDF
graphs. Also, Nie et al. [22] used language models to retrieve
and rank entities given a keyword query. However, our retrieval
model is the first to adopt language models for statement search
over documents.

An overview of semantic search for textual documents is given
in [20], which surveyed 22 systems, none of which providing any
document ranking; the authors actually point out the necessity of
research in that direction. The Semantic Desktop [29] is a semantic
search engine that combines fact retrieval with semantic document
retrieval using a triple-based algorithm and graph traversal. Given
a natural language query, the approach tries to infer a structured
query and retrieve matching triples. If there is no perfect answer,
the ontology that the queries are evaluated against is used to expand
the user query, and the expanded query is evaluated on a document
collection to retrieve matching documents. RankIE [7] is a system
for entity-based document search that can exploit structural back-
ground knowledge such as ontologies. It includes the ExplainIE
tool [4], which was developed to debug IE results in business
intelligence applications, mainly by visualizing how entities and
documents are related.

Semantic Web search engines try to find RDF content on the
Web based on keywords or URIs. To rank the sources of relevant
content, they often use variations of the the PageRank algorithm [9,
14] or the tf-idf measure [23]. Semantic Web search engines focus
on locating RDF sources and do not consider provenance of RDF
data. An important aspect in this context is how to present results to
a user, the problem of snippet generation for facts has been studied
a lot [1, 24].

3. BACKGROUND ON

INFORMATION EXTRACTION
Information Extraction (IE) is the process of automatically ex-

tracting structured information such as entities, relationships be-
tween entities, and properties of entities from unstructured and
semi-structured sources. The process of information extraction
typically is a two-fold process. First, the system analyzes docu-
ments and extracts statement candidates from the text. Second, it
integrates these candidates by removing contradictory statements
or deriving new ones (through inference for instance).

One common approach to extract statements from text is to use a
set of phrase-patterns to match the possible linguistic realizations of
the abstract statements. This is usually done by combining natural
language processing and statistical inference in order to identify
qualifying patterns that are used to extract facts of interest.

Once statements, also referred to as facts, have been extracted,
they are stored in a fact repository or a knowledge base. The
most common format to store extracted facts is the W3C-endorsed
RDF, which is the model adopted in the Semantic Web commu-
nity. RDF knowledge bases consist of statements in the form of
subject-property-object triples. For example, the information that
Barack Obama was born in Hawaii can be represented formally
as the RDF triple (Barack_Obama,bornIn,Hawaii) with subject
Barack_Obama, property/relation bornIn, and object Hawaii.
An RDF knowledge base can conceptually be regarded as a large
graph with nodes corresponding to entities (subjects and objects)
and edges denoting relationships or properties, which we refer

to as an RDF graph. Search on this kind of ER/RDF data is
naturally expressed by means of structured graph-pattern queries
using query languages such as the W3C-endorsed query language
SPARQL [31]. A result to a query expressed in such a way is a
subgraph of the underlying knowledge graph that consists of a set
of triples matching the query graph.

In this paper, we assume that our framework is working with
named (canonic) relations originating from information extraction
tools working with predefined canonic relations [21, 33], i.e., the
system is configured to look for patterns for a set of given relations,
e.g., bornIn. We can easily extend the framework to work with
anonymous relations defined by clusters of similar patterns. For a
cluster the confidence of each pattern can be defined by the distance
to the cluster center. Some systems [3, 12] extract “interesting”
patterns from a document corpus without naming them and try
to cluster semantically similar patterns. Each obtained cluster
represents an anonymous relation.

4. STATEMENT SEARCH
As explained in the introduction, statement search aims at re-

trieving a set of relevant documents to a set of given statements.
This type of search can be motivated by two slightly different
information needs. First, a user might want to verify whether
a certain statement is true. For instance, a user might wonder
whether Barack Obama was born in Kenya and seek documents
confirming this statement. Second, a user might want to investigate
a certain statement, i.e., learn more details about it. For example,
the user might know that Osama Bin Laden died on May 2011
but wants to find more details about his death. In both cases,
the user is interested in documents referencing the statement in
some way. However, with respect to these two user goals, a
document is relevant to a statement query if it either verifies the
statement (persuasiveness) or provides further information about
the statement topic (on-topicness). These two main properties
might compete with each other in determining the relevance of
a given witness document. There might be documents that very
clearly and convincingly support the statement (persuasive) but
only casually mention the statement and are mainly concerned
with another topic (not on-topic). For instance, the Wikipedia
article about the Kapiolani Medical Center in Honolulu might
clearly state that Obama was born there but then would provide
no further information about Obama’s childhood. A blog post
discussing Obama’s childhood on the other hand could provide
more information about the president’s youth but might be a less
convincing source for the verification of his birthplace. The quality
of a witness for a given query therefore depends on the user’s
preference on these two aspects. Our ranking model tries to
incorporate different features estimating a document’s on-topicness

and its persuasiveness in a way that allows to adapt the ranking
according to a user’s preferences. Still, a perfect witness would
satisfy both properties to the full, being informative on the topic
and persuasive for the statement(s) in the query. Thus, at the core,
our ranking model aims at finding the best documents based on
the probability that they are a perfect witness for a given set of
statements. In our model, the quality of a witness is therefore based
on the following aspects:

1. Given a set of statements g, a witness can only be perfect if
it covers all statements in g. This affects both properties, as
a statement cannot be verified with a document that does not
contain the statement, and it is also unlikely that additional
information related to the statements can be found there.

2. A document is only informative to a user if she can learn
more about the statement(s) of interest. Therefore, the
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Figure 1: Architecture

document needs to focus on the topic given by the state-
ment(s). This is the main aspect of on-topicness: that more
information on the topic needs to be present.

3. Statements can be expressed in various textual forms. Some
of these statement representations are more directly asso-
ciated with the abstract statement than others. A witness
can only be used to verify a statement if the statement is
expressed clearly within the document’s content. A perfect
witness will formulate the statement(s) in a way that leaves
no room for other interpretations. This is the main aspect of
persuasiveness, if the expression of the statement is vague it
will not convince a user.

4. In general, we trust information obtained from some doc-
uments more than information contained in others. For
instance, if the White House website issues a birth certificate
for President Obama stating that he was born in Hawaii
while a conspiracy blog page states that he was instead
born in Kenya, ignoring other factors, most people would
rather believe the White House. Both, the statement(s)
of interest expressed in the documents (persuasiveness) as
well as further information (on-topicness) are subjects to
trustworthiness.

Our ranking model, introduced in detail in Section 6, tries to take all
these considerations into account. Before we dwell into the details
of our ranking model and how it achieves the aforementioned goals,
we describe our system framework in the next section.

5. SYSTEM OVERVIEW
As explained in the introduction, our system employs an infor-

mation extraction tool to implement statement search. That is, it
transforms a user query into RDF statements and retrieves the most
relevant witness documents supporting them. Figure 1 gives an
overview of our system. In a nutshell, our system works as follows:

1. The document corpus is processed by an information ex-
traction (IE) tool. This process results in two types of
information:

• dictionaires that are used to look up entities based on
entity names and textual patterns based on relations,
and

• a set of indices that can be used to find occurrences of a
given entity or a statement inside the documents of the
corpus.

2. Given a user query, our system utilizes a translation com-
ponent that transforms the user query into a set of RDF
statements referring to entities and relations contained in our
dictionaries.

3. The system retrieves the documents that match these state-
ments and ranks them based on how likely they are to be
relevant witnesses to the given statements.

In the remainder of this section, we provide more details on the
most important components of our framework.

5.1 Dictionaries
The framework uses two types of dictionaries: an entity dic-

tionary and a relation dictionary. With the help of an IE system,
we can use these dictionaries to identify statements expressed in
documents and to understand user queries and translate them into
triple-based statement queries.

Entity Dictionary

Unique entities usually have several non-canonical names (Defini-
tion 5.1). For instance, the unique entity Barack_Obama can be
represented by the names “Obama”, “Barack Hussein Obama”,
“the US President”, etc. The relationship between entities and their
names is an m-to-n relation, i.e., every entity can have many names
and every name can refer to different entities. The same entity name
could even refer to different entities within the same document. For
instance, in a biography about President Obama, the entity name
“Obama” might refer to President Barack_Obama or to his father
Barack_Obama_Sr. The problem of identifying the right entity for
a given name is known as entity disambiguation [19] . However, at
this point we assume:

1. Each entity name is uniquely addressing exactly one entity
within a given document.

2. The disambiguation is solved externally and a mapping from
entity names to the entity they refer to is given, e.g., as a side
product obtained from information extraction.

DEFINITION 5.1 (ENTITY DISAMBIGUATION). Given an en-

tity name s̃ that occurs in a document d, the entity it refers to within

d is given by: entity (s̃,d).

The framework makes use of the entity dictionary in three
respects: first, when translating user queries into triple form (Sec-
tion 5.5), second, when matching statements back to their textual
occurrences in the document (Section 5.1), and third, when creating
the entity occurrence index (Section 5.3).

Relation Dictionary

Similar to the case of entities, a relation can be expressed using
various patterns. A pattern p is defined as a recurring textual
representation of an abstract relation r. For instance, the textual
phrase “was born in” could correspond to the pattern “X was born
in Y” indicating the bornIn relation on the subject entity X and
the object entity Y. While we assume that the patterns we deal
with represent binary relations between two arguments, we make
no assumptions on the way a pattern is defined. A pattern could,
for example, be represented by a textual phrase, an n-gram, or a
regular expression. We refer to the occurrence p(s̃, õ) of a pattern
p with two entity names s̃ and õ as a pattern instance. If it occurs
in document d, we write p(s̃, õ) ∈ d. For example, given the
pattern above, the phrase “Obama was born in Kenya” would be
a pattern instance with X representing the entity name “Obama”

and Y being instantiated with “Kenya”.
Any pattern can indicate multiple relations with varying cer-

tainty. For instance, the phrase “Obama’s home country Kenya”
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could refer to the fact that Barack Obama has family roots in Kenya
(Barack_Obama,hasAncestorsFrom,Kenya) or it could indicate
that he was born (bornIn) in Kenya. Thus, for any relation r

that can be expressed by pattern p a confidence value conf(p, r)
(Definition 5.2) representing the likelihood that p expresses r is
given.

DEFINITION 5.2 (PATTERN CONFIDENCE). Assume two en-

tity names s̃ and õ, a pattern p, and a relation r are given. The

confidence conf(p, r) represents the probability that given that

a pattern instance p(s̃, õ) appears in a document d, the author

wanted to express the relation r(entity(s̃, d), entity(õ, d)). We

say p indicates r (indicates(p, r)) if and only if conf(p, r) > 0.

Given a query statement (RDF triple), indicative pattern in-
stances can easily be identified by matching the entities and the
triple relation to patterns that indicate it. Formally, if D is the
document corpus, all indications of a triple statement (s,r,o) are
given by {p(s̃, õ)|indicates(p, r) ∧ ∃d ∈ D.entity(s̃, d) =
s ∧ entity(õ, d) = o ∧ p(s̃, õ) ∈ d}.

For instance, given the statement triple t = (Barack_Obama,
bornIn, Kenya), a document where “Kenya” is mapped to Kenya,
“Obama” is mapped to Barack_Obama, and given that indicates(
“X was born in Y”,bornIn) holds, then the pattern instance
“Obama was born in Kenya” is an indicative pattern instance for t.

5.2 Witnesses
Based on the above introduced formalisms, we can now formally

define the notion of a witness (document) for a (set of) statement(s).
Whenever a pattern instance p(s̃, õ) of a pattern indicating a

relation r occurs in a document d, d is called a witness for the
statement r(s, o) with s = entity(s̃, d) and o = entity(õ, d).
Thus, given a set of statements g = {t1, ...tn}, where ti =
(si, ri, oi), then d is a witness for g if there is at least one ti for
that a pair s̃,õ exists such that:

1. si=entity (s̃,d),
2. oi=entity (õ,d),
3. indicates(p, ri), and
4. p(s̃, õ) occurs in d.

Any witness for g is a candidate considered in our ranking al-
gorithm described in Section 6. In order to efficiently identify
documents in which pattern instances matching a given statement
occur, we make use of a set of indices (Section 5.3).

5.3 Indices
We have two types of indices in our system. The first one

deals with relation patterns and utilizes both the entity and relation
dictionaries. For each document, it stores the number of times
a certain pattern is instantiated with certain arguments in a docu-
ment. For example, given the statement (Barack_Obama,bornIn,
Kenya), and the text snippet “Obama was born in Kenya”, the
index would store that pattern “X was born in Y” appears with
“Obama” and “Kenya”. In fact, as we assume entity names are
disambiguated, the index directly stores the disambiguated entities
Barack_Obama and Kenya. Hence, to identify witness candidates
given a statement triple, it suffices to match the pattern instances
of all patterns indicating the relation against the arguments of the
statement.

The second index deals with entities and stores for each docu-
ment d the number of times an entity is mentioned in d. Since
entities do not directly appear inside the documents but are referred
to using different natural language names, this index utilizes the
entity dictionary in order to look up the entity corresponding to an
entity name (see Definition 5.1).

5.4 IE Tool
The information extraction tool is responsible for processing the

documents in our corpus and providing the dictionaries. It is also
responsible for generating the necessary indices that our retrieval
engine operates on to retrieve and rank the witnesses. Generally
speaking, we can use any information extraction tool, e.g., [21],
if it provides us with some sort of binary patterns, preferably
associated with confidence values, to extract entity occurrences.
Since information extraction is not the focus of this paper, we omit
the details of the information extraction tool and refer the user to
related work [21]. The output of the IE tool that our system uses
consists of the dictionaries and indices.

5.5 Query Translator
The query translator is responsible for processing a given user

query and transforming it into a set of RDF statements that our
system can process. In order to do so, it utilizes the dictionaries
and the IE tool to perform the translation of the query into a set of
RDF statements using the same vocabulary as our dictionaries and
indices. Assume, for instance, a user wants to verify that Obama
was born in Kenya, she might provide the phrase query “Obama

was really born in Kenya?”. It would then be translated into the
statement triple (Barack_Obama,bornIn,Kenya) and the system
would output witnesses containing the statement.

Alternatively, queries might also be given directly as a set of
RDF triples, such that our system could, for instance, be used as
a verification tool for automatically extracted ontologies. Assume,
for instance, a movie knowledge base is generated by an informa-
tion extraction tool. Then, a user might consider it to be a mistake
if she sees four different statements claiming that the role of the
character Tony in the movie “The Imaginarium of Dr. Parnassus”
was played by four different actors. Using our framework, she
could issue the set of all four statements to see which of them
is more likely to be true. This might lead her to a document
containing expressions of all four statements, which explains that
three actors replaced Heath Ledger as he died in the midst of the
production.

5.6 Witness Retrieval Engine
The witness retrieval engine is responsible for retrieving any

document that matches the given query (i.e. at least one statement
of the query is indicated in the document) and rank this set of
witnesses according to the ranking model described in Section
6. It utilizes the entity and relation dictionaries to identify the
corresponding possible entity names and relation patterns for the
given statements. It uses this information, along with the indices
in order to rank the matching witnesses according to the ranking
criteria described in Section 4.

Once witnesses are ranked, they are passed to the witness dis-
player which is responsible for displaying the ranked witnesses to
the user. The witness displayer can utilize a variety of techniques
to display the witnesses to the user in response to its original query.
For instance, the identified statements corresponding to the user
query can be highlighted in the returned witnesses, as well as any
other automatically extracted information that our IE tool managed
to extract from the witnesses. However, this is not the focus of this
work, and we thus omit further details about the witness displayer.

6. WITNESS RETRIEVAL AND RANKING
As explained in the previous section, our ranking model is

concerned with ranking a set of witnesses that are relevant to a
given set of RDF statements. Note that we decouple the problem
of transforming the user query into RDF statements from the
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ranking of witnesses problem since they are basically independent
problems. We thus assume that the transformation of queries into
RDF statements is deterministic. Our ranking model can easily
be extended to handle the case where this transformation process
involves inaccuracies. However, in this paper we focus on the
problem of ranking the witnesses given a set of RDF statements.

Our ranking model is based on statistical language models (LMs)
[16, 25]. The witness documents are ranked based on the probabil-
ity of being relevant to the query statements {t1, t2, ..., tn}, which
we denote as P (d|t1, t2, ...., tn) (here, d is a witness). Applying
Bayes’ rule, we have:

P (d|t1, t2, ..., tn) =
P (t1, t2, ..., tn|d)P (d)

P (t1, t2, ..., tn)
(1)

Since P (t1, t2, ..., tn) does not depend on the witnesses, we can
ignore it during the ranking. This implies that

P (d|t1, t2, ..., tn) ∝ P (t1, t2, ..., tn|d)P (d) (2)

P (d) is the prior probability that witness d is relevant to any
statement. This probability can be estimated in various ways, and
in our case we estimate it using the static authority of the page
or pagerank [8]. We do this in order to take into consideration
the trustworthiness of the witnesses (i.e., give higher weight to
witnesses that are authoritative).

As for the probability P (t1, t2, ..., tn|d), we assume indepen-
dence between the query statements for computational tractability
(in-line with most traditional keyword ranking models). Thus,

P (t1, t2, ..., tn|d) =

n∏

i=1

P (ti|d) (3)

To avoid overfitting and to ensure that the witnesses that do not
contain all the query statements do not have a zero probability, we
use smoothing:

P (t1, t2, ..., tn|d) =

n∏

i=1

[αP (ti|d) + (1− α)P (ti|Col)] (4)

The first component is the the probability of the statement ti
being generated by document d and the second component is the
probability of generating the statement ti by the whole collection
Col.

We rely on two different methods to estimate the probability
P (ti|X) of generating statement ti using X , where X ∈ {d,Col}:

Unbiased Estimator. Since statements can appear in different
forms in witnesses, we need to first fold a statement into all corre-
sponding indicative patterns instances that can be used to represent
the statement in order to estimate the probability P (ti|X). This
is similar to translation models [36], when the query is expressed
in one language, and the documents retrieved are in a different
language. Let the set Y = {y1, y2, ..., ym} be the set of all possible
pattern instances. The probability P (ti|X) is then computed as
follows:

P (ti|X) = Σm
j=1P (ti|yj)P (yj |X) (5)

The first component P (ti|yj) in Equation 5 is the probability
of representing the statement ti using pattern instance yj , which
is computed as a function of the confidence of representing the
relation of ti using the pattern of yj , as defined in Definition 5.2.
Assuming that the relation of ti is ri and the pattern of yj is pj , we
have: P (ti|yj) = f(conf(pj , ri)). Note that P (ti|yj) would be
zero if ri cannot be expressed using pattern pj .

The second component P (yj |X) in Equation 5 is the probability
of generating pattern instance yj given X where X ∈ {d, Col}.
This is estimated using a maximum-likelihood estimator as follows:

P (yj |X) =
c(yj ;X)

Σy∈Y c(y;X)
(6)

Here, c(y;X) denotes how often the pattern instance y occurs in
X .

Entity-Biased Estimator. The unbiased estimator only takes
into consideration the occurrence of the statements in the witnesses.
It does not take into consideration what other statements occur
in the witness and whether or not they are related to the query
statements. For instance, assume the user query consisted of the
statement t =(Barack_Obama, bornIn, Kenya). Also assume that
witnesses d1 and d2 both contain x statements, and that the query
statement appears in each witness only once. Thus, P (t|d1) =
P (t|d2). However, assuming that d2 contains more statements
about Obama than d1 which is a news directory for instance, we
would like to rank d2 higher than d1. To this end, let the statement
ti be of the form: (s, r, o) with subject s, predicate r and object o.
The probability P (ti|d) is now defined as follows:

P (ti|d) = βsPe(s|d) + βoPe(o|d) + (1− βs − βo)Pt(ti|d) (7)

where Pe(s|d) and Pe(o|d) are the probabilities of generating the
subject s and object o using witness d respectively, and Pt(ti|d) is
the probability of generating the whole statement t using d. The
parameters βs and βo control the influence of each component.

The probability Pt(ti|d) is estimated using the unbiased estima-
tor from Equation 5. The probabilities Pe(s|d) and Pe(o|d) are in
turn estimated using the frequency of occurrence of s and o in d,
respectively. For instance, Pe(s|d) is computed as follows:

Pe(s|d) =
c(s; d)

Σe∈dc(e; d)
(8)

where c(e; d) is the number of times an entity e occurs in docu-
ment d.

7. EVALUATION
In this section, we discuss a three-fold evaluation of our ranking

model. First, we outline the setup of our evaluation environment
(Section 7.1). Then, we discuss what effect the parameters in gen-
eral have (Section 7.2). Afterwards, we analyze the performance
of our ranking model (given the set of witnesses is already deter-
mined) based on some concrete settings tailored towards different
use cases. We use a naive arbitrary ranking and a keyword-based
entity-oriented ranking for comparison (Section 7.3). Finally, our
retrieval approach is compared to a purely keyword-based retrieval
approach, that is not aware of any statement indication found by
the extraction engine (Section 7.4).

7.1 Setup
Dataset & Document Pooling. We use the English part
of the ClueWeb 09 document corpus1, a standard IR benchmark
collection containing about 500 million English language docu-
ments harvested from the Web. As running our extraction system,
SOFIE/PROSPERA [21, 33], on the whole ClueWeb corpus would
have been too expensive with our current setup, we constructed
a document topic subset by selecting 43 well-known entities,
i.e., politicians (e.g., Barack Obama), actors/directors (e.g., Clint
Eastwood), soccer players and clubs (e.g., David Beckham) and
scientists (e.g., Albert Einstein), to retrieve the top-1000 documents
based on a BM25-based score [28] for different names and spelling
variants of these entities taken from the general purpose knowledge
base YAGO [32]. This resulted in a pool of 182,139 documents, on

1http://boston.lti.cs.cmu.edu/Data/clueweb09/
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which a modified version of SOFIE/PROSPERA was run that keeps
track of fact provenance information. As SOFIE/PROSPERA
iteratively learns new patterns, the extraction process was repeated
several times.

Queries. We defined 56 queries in the form of statement sets.
For instance, one query with a single statement would be the
set {(Barack_Obama, isLeaderOf, USA)}, while one with mul-
tiple statements focussing on JFK’s assassination would be given
by {(JFK, diedOn, 1963-11-22), (JFK, diedIn, Dallas)}. We
only considered statements that were supported by at least 10
documents (usually more). For each query, a set of potentially
relevant documents was generated by pooling the top-50 rankings
using various settings of our ranking mechanism. Remember that
this includes a filtering step such that only documents containing an
indication for at least one statement of the query were considered
for the ranking. This resulted in witness pools of 80 witnesses per
query on average with a minimum of 11 documents and a maximum
of 435 documents for a single query. For the system comparison
(see Section 7.4), additional documents retrieved by the (statement
indication unaware) runs based on keyword search were added to
each pool.

Human Assessments. As outlined earlier, our framework aims
at two different use cases. First, a user might aim to learn more
about specific statements; second, she might be interested in verify-
ing the validity of some statements. Reflecting these two use-cases
our system aims to support, all documents in the pool were assessed
1) as a whole document on their on-topicness (does it contain
more information relevant to the query than the actual statement
indication) and 2) separately for each statement on their persua-
siveness (how strong is its support for this statement). For both
assessment dimensions a graded relevance scale with three grades
(non-relevant, somewhat relevant, highly relevant) was used. For
binary measures such as MAP we project the graded assessments
to a binary relevance scale, such that a statement or document is
relevant in the binary scale if it is highly relevant in the graded
scale. For the parameter and ranking (of prefiltered witnesses),
evaluation we will mostly assume that documents can only be
judged as being relevant for a statement on the persuasiveness scale
if the extraction system recognized an appropriate indication of the
statement in that document. From a usability point of view this
makes sense since a user will usually skip a result for which the
system cannot highlight a statement indication. However, if the
user considers the document, she may be able to identify support
for statements not recognized by the extraction engine. In a more
aggressive assessment, we have also considered a document as
relevant with regard to persuasiveness if the assessor could find the
statement, but the system could not. Note that this only affects
multi-statement queries since we require at least one indication
of a statement to add a document to the pool. We denote the
evaluation ignoring indications not recognized by the extraction
system as machine-ignorant and the one that is more thorough as
human-aware. For the system evaluation (Section 7.4), where we
compare against purely keyword search approaches without any
prior knowledge about statement indications, we solely use the
human-aware method.

Measures. We apply different measures for result quality that
loosely correspond to our two evaluation aspects. First, we com-
pute the mean average precision (MAP) and the normalized dis-
counted cumulative gain (nDCG, [18]) for the top 5,10, and 20
results, averaged over all queries. Second, we compute the mean
rank (mr), i.e., the first rank at which at least one convincing (highly

relevant) indication has been seen for each statement in the query
on average, and related to this the mean reciprocal rank (mrr).

7.2 Parameter Analysis
Our model provides several possibilities to adjust it to a user’s

needs. The entity bias can be controlled by the βs, βo variables (see
Equation 7). Similarly the influence of the smoothing versus the
main ranking function can be influenced by setting the α parameter
(Equation 4). Additionally our implementation allows to switch
influence of document trustworthiness (i.e., pagerank) on and off.
Similarly, the influence of the pattern confidence for computing
P (ti|X) in Equation 5 can be set to no influence, linear influence
or quadratic influence.

We have investigated the effects of different settings of these
parameters. The pagerank values, which we use as an approxima-
tion of a document’s probability to contain accurate and extensive
information, do not seem to have a significant impact. This might
have several reasons: 1) Our query set did not contain many
disputed statements where we saw “untrustworthy” witnesses. 2)
SPAM pages were already sorted out using the Waterloo Spam
rankings2. 3) We use pagerank only as a page trust approximation.
Pagerank might not always be a good indicator that the information
provided is of high quality, in the end we aim at having user
feedback provide the trust values. The other parameters, however,
provide the expected effects. For instance, increasing the β values
tends to improve results on the on-topicness aspect, but might
decrease the precision for the persuasiveness (see Table 1), while
a higher confidence influence tends to have the inverse effect.
However, those parameters are quite interdependent, so that there is
no definite behavior that applies to each setting, e.g., increasing one
β value means decreasing either the pattern confidence influence or
the other β parameter. If one of the β weights or both together
reach 1 they completely dominate the ranking formula which
might provoke a stronger negative (or sometimes positive) effect
depending on the other settings. Similarly, the initial step from
both β values being set to 0 towards having at least one of them
at 0.1 has a much larger impact as similar increases on a setting
where βs + βo > 0 already holds. Table 1 shows one of the more
extreme cases clearly outlining the influence of the βs parameter
on the ranking performance. For changes of the α value we could
not find a noteworthy overall impact on average. However, we did
not look into extreme values (e.g., α = 1 or 0). Still, a high value
of α can lead to overfitting as the smoothing looses influence.

7.3 Ranking Evaluation
In this section, we analyze the performance of our ranking

method, given a set of documents identified as witnesses for (part
of) the query, in terms of on-topicness and persuasiveness. We
compare the proposed ranking method to a naive ranking (naive),
which ranks the witness set randomly, as well as to a keyword-
based entity-oriented ranking method (lucene) implemented with
Apache Lucene3 using its default parameter setting. Both alter-

native ranking methods were applied on the prefiltered witness

pool generated for each query, as we only evaluate the ranking of
witnesses, not the identification of potential witnesses.

For the Lucene-based rankings, we generated keyword queries
based on the entities contained in the statement(s) of the query.
The relations are therefore not represented in the Lucene keyword
query translations. As keyword engines are specialized in finding
documents for a certain topic given by keywords, we expected
that this method will have good results in the on-topic evaluation.

2http://durum0.uwaterloo.ca/clueweb09spam/
3http://lucene.apache.org/
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relevance type measure grading scheme βs = 0 βs = 0.1 βs = 0.3 βs = 0.5 βs = 0.6 βs = 0.8 βs = 1
persuasiveness Avg MAP binary 0.898 0.813 0.817 0.826 0.816 0.815 0.79
persuasiveness Avg nDCG graded 0.898 0.844 0.82 0.808 0.802 0.8 0.78
persuasiveness Avg mrr binary 0.89 0.80 0.78 0.76 0.75 0.747 0.746
on-topicness Avg MAP binary 0.673 0.703 0.752 0.759 0.755 0.757 0.777
on-topicness Avg nDCG graded 0.61 0.71 0.764 0.781 0.780 0.786 0.79

Table 1: The effects of βs with βo = 0, quadratic pattern confidence influence, pattern weighing on and α = 0.5

We were mainly interested in a on-topicness-oriented baseline and
whether using the knowledge about relations in the ranking would
have a noticeable impact in terms of persuasiveness.

Name α βs βo confidence pagerank

persuade 0.5 0 0 quadratic on

topic 0.9 0.5 0.5 no off

mix 0.9 0.1 0.3 quadratic off

old 0.7 0 0 linear on

pr 0.5 0 0 no on

cf 0.9 0 0 quadratic off

Table 2: The ranking model configurations

For our own system, we make use of three main example con-
figurations of our ranking model representing different use cases
(for details see Table 2). One setting (persuade) aims at high per-
suasiveness by ignoring any entity occurrences, but rather relying
on the pattern confidence values. Another one (topic) mimics an
entity search, aiming at on-topicness by focusing totally on the
entity occurrences (βs = βo= 0.5, thus in a maximal combination)
ignoring any other influence like page rank or pattern confidence.
A third configuration tries to achieve a good balanced mix of both
goals by applying some entity bias while still considering pattern
confidences and applying pattern frequency smoothing (mix).

0.5

0.6

0.7

0.8

0.9

top-5 top-10 top-20

lucene naive persuade topic mix old pr cf
Figure 2: Comparison of on topic performance based on

machine-ignorant nDCG for all queries

Additionally, settings that mainly rely on pattern confidence (cf )
and respectively pagerank (pr) are investigated as well as a setting
without any entity bias and with linear confidence influence (old)
introduced in an earlier demo paper [10].

Fig. 2 shows that lucene clearly meets the expectation of per-
forming well in the on-topic evaluation in terms of nDCG, and
only topic, our parameter setting optimized for achieving high on-
topicness, can compete with it. Note, however, that the mixed
configuration mix is not too far behind (∼7%), while all other
configurations are at the same level as the naive approach.

The picture changes when we look at persuasiveness of statement
indications. Fig. 5(a) shows the mean rank for single-statement
queries. Here, the statement-oriented rankings (persuade, old) are
notably better than the entity-oriented approaches: using persuade

a user would on average have to look only at the first result to be
convinced that the statement she is interested in holds, while with
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0.9

1.0

top-5 top-10 top-20

lucene naive persuade topic mix old pr cf
Figure 3: Comparison of persuasiveness performance based on

machine-ignorant nDCG for all queries
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Figure 4: Comparison of persuasiveness performance based on

machine-ignorant MAP for all queries

lucene she would on average need to look at a second document.
Note that topic performs similar to lucene. The better performance
of statement-oriented approaches is reinforced by the mrr values in
Fig. 5(b), where persuade dominates while pagerank-only ranking
is surprisingly good. The reason for the latter might be that those
documents with a large pagerank in our corpus are often from
Wikipedia. So for most single-statement queries the Wikipedia
page of the main entity will be in the top results and would usually
contain what we are looking for. The good performance of pr

breaks down on multiple-statement queries or when we look at
the nDCG values in Fig. 3, 6 and 7, as a single good document
is not enough for a high nDCG value. For nDCG (Fig. 6) and MAP
(Fig. 4), persuade is notably ahead of the other approaches.

The advantage of using relation information on persuasiveness
becomes even clearer when we look at multi-statement queries
(Fig. 5(a), 5(b) and 7). Note that the difference between persuade,
cf and old and the topic-oriented approaches lucene,topic increases
further. You may also note that cf , which sometimes outperforms
persuade falls behind on multi-statement queries (Fig. 7). This
is probably due to the higher α value, which may lead to over-
fitting. Also, pagerank cannot help as a counterweight. It might
also be surprising that the naive approach has obviously quite a
convincingly small mr value, however, the nDCG is about half that
of the better pattern aware settings.

So far we have only considered results from the machine-

ignorant evaluation. However, results from a human-aware eval-
uation recognizing also statement indications not found by the
extraction system as support for the persuasiveness judgements are,
in general, not too different as can be seen in Fig. 5(c). While the
advantage of persuade and mix over lucene stays similar for single
fact queries, lucene can gain on multi-statement queries.

Finally, in Fig. 8 we investigate a combined relevance measure
that only counts documents as being relevant if they are highly
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Figure 5: Comparison of lucene, naive, persuade, topic, mix, old, pr, cf on persuasiveness performance based on mrr and mr values
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Figure 6: Comparison of persuasiveness performance based on

machine-ignorant nDCG for single-statement queries
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Figure 7: Comparison of persuasiveness performance based on

machine-ignorant nDCG for multi-statement queries
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Figure 8: Comparison based on nDCG for multi-statement

queries in a combined machine-ignorant evaluation setup

relevant on exactly one aspect and as being highly relevant if they
are highly relevant on both aspects. For instance, a document
being relevant in the on-topicness aspect alone is non-relevant, a
document being highly relevant in the on-topicness aspect alone is
relevant and a document being highly relevant in the on-topicness
and persuasiveness aspect is highly relevant. Here we can see that
the statement-oriented and mixed settings perform quite well with
mix being more adept for the long tail while the topic-oriented
approach falls behind.

After all, by relying mainly on entity occurrences (topic), we can
mimic the performance of a state-of-the-art keyword-based ranking
system, and this gives good results in terms of on-topicness, while
bringing in the relations (persuade) will increase the persuasiveness
decreasing the on-topicness, but also a balancing is possible with
our framework (mix). In the next step, we investigate how useful
our framework for the overall retrieval task is compared to a
keyword query system.

7.4 System Evaluation
The general use case discussed in this paper is end-user state-

ment search, so we also compare against a keyword search retrieval
system without any prior knowledge about contained statements.
Therefore, we ran Lucene (again with default settings) on the
initial set of 182,139 documents retrieved from ClueWeb with three
variations of keyword queries. First, each of our queries was
translated into a keyword query based only on the involved entities
(fluc:ee). Second, each query was fully translated with the relations
being translated by a manual mapping, e.g., translating the relation
wasBornIn to “was born in” (fluc:ere). Finally, each query was
translated fully again but the relations were translated based on the

best (highest confidence) pattern known to the extraction system for
that particular relation (fluc:epe). For each of these variations, we
gathered the top-20 documents and assessed them. The results of
the evaluation are shown in Fig. 9. As expected, the keyword-based
search achieves good results for on-topicness that are competitive
to our approach, albeit by comparing lucene with fluc:ee one can
see that the indication-based filtering improves results notably.
This becomes even more evident with respect to persuasiveness.

This can be seen by comparing the keyword-based approaches to
the naive ranking (with prefiltering) or to the prefilter-supported
Lucene run (lucene). Our persuasiveness tailored approach stands
out prominently: similarly clear as the three measures shown in
Fig. 9 are the mr values: using a keyword-based approach, a user
would need to look on average at ∼4.5 results (fluc:ee), ∼3.8
results (fluc:ere), and ∼3.7 results (fluc:epe) compared to ∼2.9
results with the prefilter supported lucene or ∼1.5 results with
the persuade setting. Note that in general the effectiveness of our
pattern index based ranking strongly depends on the quality of the
extraction system. A keyword search approach has the general
advantage that it is independent of the extraction system but vice
versa does not gain from the extraction system’s knowledge about
statement indications.

8. CONCLUSION AND FUTURE WORK
In this paper, we introduced the notion of statement search and

presented a framework implementing it. Given a phrase query,
the proposed framework maps it to a factual statement (or a set
of such statements) and retrieves documents containing textual
expressions supporting the queried statement(s). We proposed a
configurable ranking model based on language models for ranking
witnesses, which can be tuned for favoring either documents with
strong statement support or further information related to the given
statement(s). Our evaluation results show that our ranking model
outperforms term-based document ranking in finding strongly sup-
portive documents.

There are a number of possible directions for future work. An
important extension of the ranking model would be to automati-
cally derive optimal tuning parameters based on user preferences.

Another aspect in this context is diversification, i.e., given multiple
statements and a set of documents that only contain subsets of the
statements, adapt the ranking of the results in a way that documents
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Figure 9: Comparison against pure lucene based approaches with respect to on-topicness and persuasiveness based on the top-10

in the top ranks contain different subsets of the statements. In
addition, considering user feedback might help to improve result
ranking as well as the precision of the underlying information
extraction process, e.g., by exploiting direct feedback on fact
quality and counting user clicks to measure the importance of a
witness document.
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